发现 > 资讯

《癌症期刊》:AI检测皮肤癌 表现已优于人类专家

近日,研究人员首次表明,深度学习卷积神经网络(CNN)在检测黑色素瘤方面的表现,已经超过了经验丰富的皮肤科医生,

· · ·

近日,研究人员首次表明,深度学习卷积神经网络(CNN)在检测黑色素瘤方面的表现,已经超过了经验丰富的皮肤科医生,这项研究的论文成果发表在了癌症期刊《Annals of Oncology》上。

CNN 是一种人造神经网络,也是人工智能的一种形式。它模拟了大脑中的神经细胞相互连接,且对眼睛看到的事物产生反映的过程。CNN 能够快速学习它“看到”的图像,并在这个学习过程中对自身表现进行改进,体现了机器学习的原理。

QQ 截图 20180530081031

▲卷积神经网络(CNN)是人工智能的一种形式(图片来源:123RF)

在这项研究中,研究人员使用了超过 10 万张皮肤癌图像及诊断结果对 CNN 进行训练,提高 CNN 区分恶性和良性皮肤癌的能力。这些图像都是皮肤镜图像,即放大倍数为 10 倍的皮肤病变图像,其中既包括良性和恶性皮肤癌,也包括皮肤上痣的图像。在完成训练后,研究人员使用了 300 张新图像,来对 CNN 识别癌症的能力进行评估。

在此同时,研究人员邀请了全球 17 个国家的 58 位皮肤科专家,来根据皮肤镜图像做出相应诊断。这一过程主要分为两个阶段:第一阶段时,医生们需要根据皮肤镜图像,来分辨恶性黑色素瘤或良性痣,并选择控制病情的相关措施,包括手术、短期随访和无需采取措施三个选项;在四周后进行的第二阶段,医生们将会收到患者的年龄、性别和病变部位等临床信息,以及这些患者的特写图像,并根据这些信息再次做出诊断和后续措施决策。

QQ 截图 20180530081052

▲CNN 检测结果(红色曲线)与皮肤科专家检测结果平均值(大型墨绿色圆点)对比。可以看出,当特异度(X 轴)数值相同时,CNN 检测结果的敏感度(Y 轴)数值明显高于皮肤科专家检测结果(图片来源:《Annals of Oncology》)

研究结果显示,在第一阶段,皮肤科医生能够准确检测到平均 86.6% 的黑色素瘤,同时也可以准确识别出平均 71.3% 的非恶性病变。然而,当 CNN 识别良性痣的准确率达到同样的 71.3% 时,它检测出黑色素瘤的准确度竟高达 95%!在第二阶段,皮肤科医生的表现有所改善,能够准确地诊断出 88.9% 的恶性黑色素瘤和 75.7% 的非癌症病变。

QQ 截图 20180530081117

▲该研究的第一作者,德国海德堡大学皮肤病学系高级管理医师 Holger Haenssle 教授(图片来源:海德堡大学官网)

“这些研究结果表明,深度学习卷积神经网络在检测黑色素瘤的过程中,比经验丰富的皮肤科专家表现还要好,”该研究的第一作者,德国海德堡大学皮肤病学系高级管理医师 Holger Haenssle 教授表示:“CNN 可以帮助医生进行皮肤癌筛查,从而决定是否需要对病变进行活检。目前,大多数皮肤科医师已经开始使用电子皮肤镜系统,将病变转化为图像形式并进行存储,从而方便进行记录和后续随访工作。CNN 可以对存储的图像进行快速评估,以获取关于黑色素瘤诊断的信息。目前我们正在计划进行前瞻性研究,用来评估 CNN 对医生和患者的实际影响。”

参考资料:

[1] Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

[2] Man against machine: AI is better than dermatologists at diagnosing skin cancer

461557077357842171.png

领取2天会员.jpg

来源:生物360

版权及免责声明:本网站所有文章除标明原创外,均来自网络。登载本文的目的为传播行业信息,内容仅供参考,如有侵权请联系答魔删除。文章版权归原作者及原出处所有。本网拥有对此声明的最终解释权。


分享:

全部评论 ( 0 )

发评论