大脑记忆,对于我们每个人来说都是一种非常神奇的经历,近些年来,科学家们通过大量研究揭开了大脑记忆的奥秘,本文中,小编对相关研究进行了整理,分享给大家!
【1】Science:新研究支持记忆索引理论
doi:10.1126/science.aat5397
当谈到记忆时,它并不仅仅是“位置,位置,位置”。一项新的研究指出大脑不会将所有记忆储存在位置细胞(place cell)中,其中位置细胞是大脑海马体中的一种主要的神经元类型,而海马体是一种对导航和记忆至关重要的大脑区域。相反,记忆似乎是由一部分与位置关系不大但与环境(context)或情景(episode)关系较大的海马体细胞驱动的。相关研究结果发表在2018年7月27日的Science期刊上,论文标题为“The hippocampal engram maps experience but not place”。
众所周知,海马体是位置细胞所在的地方。人们提出作为记忆研究的热点,海马体是储存在印迹细胞(engram cell)中的经验记忆(memories of experiences)的物理位置。日本理化研究所脑科学中心的Thomas McHugh说,“神经科学领域仍然在努力解决印迹记忆(engram memory)的概念。我们知道当印迹细胞被激活时,它们发挥什么作用,但是我们并不知道它们代表什么和它们如何发挥功能。”
【2】Cell子刊:做好心理准备没?新研究竟让早期遗忘的记忆再现
doi:10.1016/j.cub.2018.05.059
与人类一样,当小鼠失去婴儿期经历的记忆时,它们会经历一段失忆。如今,在一项新的研究中,来自加拿大多伦多大学和多伦多病童医院的研究人员报道这些记忆并没有被小鼠完全遗忘,只是难以回想起来,更重要的是,它们能够从储存的记忆痕迹中取出。相关研究结果于2018年7月5日在线发表在Current Biology期刊上。
在美国纽约大学神经科学中心研究记忆的Cristina Alberini(未参与这项研究)写道,根据这项研究,早期生活经历“留下非常持久的痕迹,即便这些记忆并没有被表达出来”。
在遇到记不起早年经历的病人后,奥地利精神分析学家西格蒙德-弗洛伊德(Sigmund Freud)在19世纪末首次创造了婴儿期遗忘(infantile amnesia)这个术语。从那以后,科学家们试图理解为什么人类、非人灵长类动物和啮齿类动物都会经历这种现象。人们并不清楚这些丢失的记忆是由于存储不当还是由于低效回忆。
【3】Science:重磅!发现重写创伤记忆的神经元
doi:10.1126/science.aas9875 doi:10.1126/science.aau0035
对创伤经历的回忆会导至精神健康问题,如创伤后应激障碍(PTSD),这会破坏一个人的生活。据估计,当前将近三分之一的人会在他们生命中的某个时刻遭受恐惧或应激相关的障碍。如今,一项新的研究在细胞水平展示了一种疗法如何能够治疗长期的创伤记忆。相关研究结果发表在2018年6月15日的Science期刊上。
在治疗创伤记忆领域,对恐惧衰减(fear attenuation)是否涉及通过新的安全记忆痕迹(memory trace of safety)或将原始的恐惧记忆痕迹(memory trace of fear)重写为安全记忆痕迹来抑制原始的恐惧记忆痕迹,人们长期以来争论不止。这种争论的一部分与我们总体上还不能完全理解神经元如何存储记忆的事实相关。虽然这项研究取得的新发现不能排除这种抑制机制,但是它们首次证实了重写创伤记忆在治疗创伤记忆中的重要性。
这个领域的研究重点在于理解大脑减少创伤记忆的能力,但令人吃惊的是,很少有研究在动物模型中探究减轻长期创伤(又称“远程恐惧”)的治疗方案。
【4】Science:揭示记忆储存在印迹神经元突触中
doi:10.1126/science.aas9204
根据一项新的研究,当形成记忆时,某些神经元之间形成更大的更密集的连接。相关研究结果发表在2018年4月26日的Science期刊上,论文标题为“Interregional synaptic maps among engram cells underlie memory formation”。
科学家们长期以来一直试图理解大脑在何处和如何储存记忆。在20世纪初,德国科学家Richard Semon创造了术语“印迹(engram)”来描述大脑中记忆的物理表征。随后,在20世纪40年代,加拿大心理学家Donald Hebb提出当神经元编码记忆以及在共活化记忆或印迹之间形成的连接(也被称作突触)时,神经元就得到强化了---这一理论被广泛地转述为“一起放电的神经元连接在一起(fire together, wire together)”。这两种观点已成为记忆研究的基石---并且在它们首次出现后的几十年中,科学家们已经积累了大量支持它们的证据。
【5】PNAS:记忆形成的新机制
doi:10.1073/pnas.1720956115
大脑中两个神经元连接的部位会出现化学信号与电信号的交流,研究者们认为这是大脑学习能力以及记忆形成的关键。然而,由于突触部位的蛋白会发生快速的再生,因此科学家们难以解释突触是如何形成长期的稳态,进而促进终身性的学习能力以及记忆的形成。
如今,来自约翰霍普金斯大学的神经学家们成功地通过大规模的研究发现了小鼠大脑突触中164个蛋白质,这些蛋白质能够能够在突触中稳定存在数周到数个月的时间。他们认为这些稳定存在的蛋白质是长期记忆以及学习能力存在的前提。相关结果发表在最近一期的《PNAS》杂志上。
“我们已经知道突触的结构趋于稳定的状态,能够在大鼠脑部存在至少一年的时间",该研究的作者,来自约翰霍普金斯大学医学院的神经学教授Richard Huganir博士说道。此前研究人员已经知道眼部晶状体中存在一类稳定的蛋白质"crystallin",结缔组织中也存在一类胶原蛋白。此外,核孔周围的蛋白质以及组蛋白也属于比较稳定的状态。
【6】Neuron:记忆形成的最新分子机制
doi:10.1016/j.neuron.2018.01.026
最近,来自MIT的神经学家们发现了一种能够促进神经元记忆相关突触变得更加强壮的细胞信号通路,这一发现首次指出长期记忆的形成是由于海马区一个叫做CA3的区域介导的。
研究者们发现此前负责调控神经元基因表达活性的蛋白Npas4能够调控海马区CA3区域以及齿状回区域内神经元的连接强度。在没有Npas4存在的情况下,长期记忆难以形成。
此前神经学家们已经知道大脑通过调节突触的强度形成记忆,这需要许多存在于突触中的蛋白质的协同作用。CA3区域内的神经元对于文字形式的记忆形成具有重要的作用,这些记忆能够将事件发生的时间、地点以及情感与事件本身联系起来。神经元通过三种不同的机制接受突触传递的信号,而科学家们认为齿状回来源的信号对于文字性记忆的形成具有重要的影响,然而其中的机制并不清楚。
【7】eLife:关键蛋白促进记忆形成
doi:10.7554/eLife.30640
如果你问一个普通人记忆是什么,那么得到的回答可能是童年或过去生活的影像,但神经学家Charles Hoeffer则认为记忆的本质是蛋白质。五年来,来自CU Boulder的助理教授Charles Hoeffer深入研究了AKT,一类广泛存在于大脑组织中的激酶,对于记忆形成的作用。
在最近发表在《elife》杂志上的一篇研究中,Hoeffer等人首次发现AKT在三种不同类型的脑细胞中均存在,而且分别会对大脑健康产生不同的影响。这一发现将会为靶向大脑胶质瘤这一恶性癌症提供新的治疗方案,也为阿兹海默症以及精神分裂症等的治疗带来希望。1970年代,AKT被首次发现为一类"癌基因,之后,AKT又被发现能够促进大脑细胞之间的连接。
【8】Science:大脑记忆形成新机制
doi:10.1126/science.aan6203
利用新型的“NeuroGrid”技术,科学家们发现睡眠能够促进大脑与记忆形成有关区域之间的相互交流。相关结果发表在《Science》杂志上。
大脑中一类叫做海马区的结构对于新形成记忆向永久记忆转变具有关键的作用,此前研究者们已经发现:在睡眠阶段,大脑海马区会产生一种高频的神经信号,他们认为这一信号对于记忆的储存具有重要的作用。目前这项研究则证明了这一信号的存在,以及证明了它们的具体分布位点是在复杂感受性信息进行处理的大脑区域。
“当我们初次发现的时候,都以为是错的,因为这信号此前从未被发现过”,该研究的第一作者,来自哥伦比亚大学的助理教授Dion Khodagholy说道。
【9】PNAS:重大突破!科学家建立记忆形成的新理论
doi:10.1073/pnas.1714248114
学习与记忆被认为由三部分组成:将事件编码进入神经网络,将编码好的信息储存起来,将来回忆的时候重新调出使用。
两年前,MIT的神经学家们发现了在特定类型逆行性遗忘患者中,特定事件的记忆能够储存在大脑中,尽管难以在自然的条件下被唤醒。这一发现表明目前对于记忆形成的模型需要进行修改,而科学家们也在文章中阐述了这种“沉默性记忆”的形成以及重新激活的细节。
研究者们认为他们的发现能够表明记忆的储存不依赖于记忆细胞之间神经连接的强度。相反地,这些细胞在事件发生后的最早几分钟内进行的相互接触就足够进行记忆的存储。“我们的主要结论之一是:特定的记忆的储存依赖于结构上相连的神经细胞的特异性连接,而不依赖于突触的强度”。
【10】Nature:原来记忆是这样形成的!科学家发现记忆形成新机制
doi:10.1038/nature23658
来自法国的研究人员最近发现了突触储存信息和控制信息储存过程的一个新机制,这一突破进展让科学家们离揭示记忆和学习过程的神秘分子机制又近了一步。相关研究结果发表在国际学术期刊Nature上。
神经元之间通过突触传递信息,大约50年前科学家们发现了突触的可塑性,科学界也一直认为突触是记忆和学习过程中的一个重要的功能组成部分。神经递质受体也在神经元信息传导方面发挥关键作用,大约几年之前科学家们发现神经递质受体并非像之前认为的那样静止不动而是一直处于移动状态。他们提出假设认为通过神经元活性控制受体的移动在特定时间对突触上的受体数量进行调节能够改变突出传递信息的有效性。
来源:小桔灯网
版权及免责声明:本网站所有文章除标明原创外,均来自网络。登载本文的目的为传播行业信息,内容仅供参考,如有侵权请联系答魔删除。文章版权归原作者及原出处所有。本网拥有对此声明的最终解释权。
{replyUser1} 回复 {replyUser2}:{content}