Genomes of Multicellular Organisms Have Evolved to Attract Nucleosomes to Promoter Regions
作者:, Helmut Schiessel
摘要:Abstract Sequences that influence nucleosome positioning in promoter regions, and their relation to gene regulation, have been the topic of much research over the last decade. In yeast, significant nucleosome-depleted regions are found, which facilitate transcription. With the arrival of nucleosome positioning maps for the human genome, it was discovered that in our genome, unlike in that of yeast, promoters encode for high nucleosome occupancy. In this work, we look at the genomes of a range of different organisms, to provide a catalog of nucleosome positioning signals in promoters across the tree of life. We utilize a computational model of the nucleosome, based on crystallographic analyses of the structure and elasticity of the nucleosome, to predict the nucleosome positioning signals in promoter regions. To be able to apply our model to large genomic datasets, we introduce an approximative scheme that makes use of the limited range of correlations in nucleosomal sequence preferences to create a computationally efficient approximation of the full biophysical model. Our predictions show that a clear distinction between unicellular and multicellular life is visible in the intrinsically encoded nucleosome affinity. Furthermore, the strength of the nucleosome positioning signals correlates with the complexity of the organism. We conclude that encoding for high nucleosome occupancy, as in the human genome, is in fact a universal feature of multicellular life.
关键词:
论文方向:[{"id":13,"name":"细胞生物学"},{"id":19,"name":"生物物理学"}]
发表期刊:Biophysical Journal Volume 112, Issue 3
发表时间:Tue Feb 07 00:00:00 CST 2017
数字识别码:10.1016/j.bpj.2016.12.041
是否作者本人: 否
版权及免责声明:
本网站所有论文文件均系用户自行上传或提供,本网站对其内容准确性及合法性概不负责,亦不承担任何法律责任。论文版权归原作者及原出处所有。
如您发现网站其他用户上传的论文有侵犯您的姓名权、隐私权、著作权或其他合法权益现象的,请及时与本网站联系并附加相关权利证明文件,以便本网站及时作出处理,维护您的合法权益。
本网站拥有对此声明的最终解释权。
{replyUser1} 回复 {replyUser2}:{content}