V5
林森
学历:
领域:
学校:天大
说明:
北京 东城区 积分
1573
粉丝
0
论文
5
问答
41

暂无数据~

V5 林森 声望 78 2周前 上传
Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors
Abstract Semaphorin3A (Sema3A) is a vertebrate-secreted protein that was initially characterized as a repulsive-guidance cue. Semaphorins have crucial roles in several diseases; therefore, the development of Sema3A inhibitors is of therapeutic interest. Sema3A interacts with glycosaminoglycans (GAGs), presumably through its C-terminal basic region. We used different biophysical techniques (i.e., NMR, surface plasmon resonance, isothermal titration calorimetry, fluorescence, and UV-visible spectroscopy) to characterize the binding of two Sema3A C-terminus-derived basic peptides (FS2 and NFS3) to heparin and chondroitin sulfate A. We found that these peptides bind to both GAGs with affinities in the low-micromolar range. On the other hand, a peptoid named SICHI (semaphorin-induced chemorepulsion inhibitor), which is positively charged at physiological pH, was first identified by our group as being able to block Sema3A chemorepulsion and growth-cone collapse in axons at the extracellular level. To elucidate the direct target for the reported SICHI inhibitory effect in the Sema3A signaling pathway, we looked first to the protein-protein interaction between secreted Sema3A and the Nrp1 receptor. However, our results show that SICHI does not bind directly to the Sema3A sema domain or to Nrp1 extracellular domains. We evaluated a new, to our knowledge, hypothesis, according to which SICHI binds to GAGs, thereby perturbing the Sema3A-GAG interaction. By using the above-mentioned techniques, we observed that SICHI binds to GAGs and competes with Sema3A C-terminus-derived basic peptides for binding to GAGs. These data support the ability of SICHI to block the biologically relevant interaction between Sema3A and GAGs, thus revealing SICHI as a new, to our knowledge, class of inhibitors that target the GAG-protein interaction.
V5 林森 声望 78 1个月前 上传
Mapping Cell Membrane Fluctuations Reveals Their Active Regulation and Transient Heterogeneities
Abstract Shape fluctuations of the plasma membrane occur in all cells, are incessant, and are proposed to affect membrane functioning. Although studies show how membrane fluctuations are affected by cellular activity in adherent cells, their spatial regulation and the corresponding change in membrane mechanics remain unclear. In this article, we study how ATP-driven activities and actomyosin cytoskeleton impact basal membrane fluctuations in adherent cells. Using interference imaging, we map height fluctuations within single cells and compare the temporal spectra with existing theoretical models to gain insights about the underlying membrane mechanics. We find that ATP-dependent activities enhance the nanoscale z fluctuations but stretch out the membrane laterally. Although actin polymerization or myosin-II activity individually enhances fluctuations, the cortex in unperturbed cells stretches out the membrane and dampens fluctuations. Fitting with models suggest this dampening to be due to confinement by the cortex. However, reduced fluctuations on mitosis or on ATP-depletion/stabilization of cortex correlate with increased tension. Both maps of fluctuations and local temporal autocorrelation functions reveal ATP-dependent transient short-range (<2 μm) heterogeneities. Together, our results show how various ATP-driven processes differently affect membrane mechanics and hence fluctuations, while creating distinct local environments whose functional role needs future investigation.
V5 林森 声望 78 1个月前 上传
Extracting Cell Stiffness from Real-Time Deformability Cytometry: Theory and Experiment
Abstract Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential applications in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability. However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theoretical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quantitative mechanical sampling of large cell populations becomes feasible.

暂无数据~

服务器异常